
Performing Verification and Validation in Architecture-Based Software Engineering
(Position paper accepted at the European Reuse Workshop, but not presented)

Edward A. Addy
NASA/WVU Software Research Laboratory

NASA/WVU Software IV&V Facility
100 University Drive

Fairmont, WV 26554 USA
eaddy@wvu.edu

1. INTRODUCTION
The implementation of architecture-based software engineering not only introduces new activities to the

software development process, such as domain analysis and domain modeling, it also impacts other activities of
software engineering. These other areas that are affected include Configuration Management, Testing, Quality
Control, and Verification and Validation (V&V). Activities in each of these areas must be adapted to address the
entire domain or product line rather than a specific application.

V&V methods are used to increase the level of assurance of critical software, particularly that of safety-
critical and mission-critical software. Software V&V is a systems engineering discipline that evaluates software in
a systems context [Wallace and Fujii 1989]. The V&V methodology has been used in concert with various software
development paradigms, but always in the context of developing a specific application system. However, an
architecture-based software development process separates domain engineering from application engineering in
order to develop generic reusable software components that are appropriate for use in multiple applications.

The earlier a problem is discovered in the development process, the less costly it is to correct the problem.
To take advantage of this, V&V begins verification within system application development at the concept or high-
level requirements phase. However, an architecture-based software development process has tasks that are
performed earlier, and possibly much earlier, than high-level requirements for a particular application system. In
order to bring the effectiveness of V&V to bear within an architecture-based software development process, V&V
must be incorporated within the domain engineering process.

On the other hand, it is not possible for all V&V activities to be transferred into domain engineering,
since verification extends to the installation and operation phases of development and validation is primarily
performed using a developed system. This leads to the question of which existing (and/or new) V&V activities
would be more effectively performed in domain engineering rather than in (or in addition to) application
engineering. Related questions include how to identify the reusable components for which V&V at the domain
level would be cost-effective, and how to determine the level to which V&V should be performed on the reusable
components.

2. DIFFERENCES BETWEEN V&V AND COMPONENT CERTIFICATION
Much work has been done in the area of component certification, which is also called evaluation,

assessment, or qualification. These terms can have slightly different meanings, but refer in general to rating a
reusable component against a specified set of criteria. Reuse libraries often use levels to indicate the degree to
which a component has been evaluated by the library. The Asset Source for Software Engineering Technology
(ASSET) library and the Army Reuse Center library both have four levels of certification, although the use of the
term “levels” is operationally different in the two libraries [Poore et al. 1992]. Component-based libraries evaluate
reusable components against criteria such as reusability, evolvability, maintainability, and portability, as well as
expending various levels of effort to ensure the component meets its specification. Other schemes for component
certification include the certification framework developed by the Certification of Reusable Software Components
Program at Rome Laboratory [Software Productivity Solutions 1996], and the suitability testing performed by the
National Product Line Asset Center on behalf of the U.S. Air Force Electronic Systems Center [Unisys and EWA
1994].

The common thread through all of these certification processes is the focus on the component rather than
on the systems in which the component will eventually be (re)used. Dunn and Knight [1993] note that with the
exception of the software industry itself, customers purchase systems and not components. Ensuring that
components are well designed and reliable with respect to their specifications is necessary but not sufficient to

Framework for V&V in Architecture-Based Software Engineering 2

show that the final system meets the needs of the user. Component evaluation is but one part of an overall V&V
effort, analogous to code evaluation in V&V of an application system.

Another distinction between V&V and component certification is the scope of the artifacts that are
considered. While component certification is primarily focused on the evaluation of reusable components (usually
code-level components), V&V also considers the domain model and the generic architecture, along with the
connections between domain artifacts and application system artifacts. Some level of component certification
should be performed for all reusable components, but V&V is not always appropriate. V&V should be conducted at
the level determined by an overall risk mitigation strategy.

3. FRAMEWORK FOR PERFORMING V&V WITHIN ARCHITECTURE-BASED SOFTWARE
ENGINEERING

A draft framework for performing V&V within architecture-based software engineering is formed by
adding V&V activities to a two life-cycle model involving both domain engineering and application engineering.
The application-level IV&V tasks described in [IEEE STD 1012] serve as a starting point. Domain-level tasks are
added to link life-cycle phases in the domain level, and transition tasks are added to link application phases with
domain phases. This draft framework was refined by a working group at Reuse ‘96 [Addy 1996], and the resultant

framework is shown in Figure 1.

Figure 1: Framework for V&V in Architecture-Based Software Engineering

Domain-level V&V tasks are performed to ensure that domain products fulfill the requirements
established during earlier phases of domain engineering. Transition-level tasks provide assurance that an
application artifact correctly implements the corresponding domain artifact. Traditional application-level V&V
tasks ensure the application products fulfill the requirements established during previous application life-cycle
phases. More details on the framework than allowed by the space of this abstract can be found in [Addy 1998].

Performing V&V tasks at the domain and transition levels will not automatically eliminate any V&V
tasks at the application level. However, reduction in the level of effort for some application-level tasks might be
possible. The reduction in effort could occur in a case where the application artifact is used in an unmodified form
from the domain component, or where the application artifact is an instantiation of the domain component through
parameter resolution or through generation.

System
Specification

Domain
Analysis

Domain
Design

Domain
Implementation

Requirements
Analysis

System
Design

System
Implementation

Domain Engineering

Application Engineering

New and
Existing System

Artifacts and
Requirements

(Domain
Concepts)

System
Requirements
(Common and

Unique)

Domain
Model

Domain
Architecture

Domain
Components

New
System

Domain Management

System
Architecture

Program Management

Verification
Development

Validation
Correspondence

Framework for V&V in Architecture-Based Software Engineering 3

Domain maintenance and evolution are handled in a manner similar to that described in the operations
and maintenance phase of application-level V&V. Changes proposed to domain artifacts are assessed to determine
the impact of the proposed correction or enhancement. If the assessment determines that the change will impact a
critical area or function within the domain, appropriate V&V activities are repeated to assure a correct
implementation.

Although not shown as a specific V&V task for any particular phase of the life-cycle, criticality analysis is
an integral part of V&V planning. Criticality analysis is performed in V&V of application development in order to
allocate V&V resources to the most important (i.e., critical) areas of the software [IEEE Std 1059-1993]. This
assessment of criticality and the ensuing determination of the level of intensity for V&V tasks are crucial also
within architecture-based software engineering. Not all domain products will be used in critical application
systems, and some of those used in critical application systems may not be in a critical area of the software. Some
reusable components may be used in multiple systems, but may be a part of the critical software in only one or two
of the systems. V&V should be performed only on domain products that are involved in the critical software in one
or more application systems, and V&V tasks should be performed at a level of intensity appropriate to the level of
criticality. Determining the domain products for which to perform V&V, and the appropriate level of intensity for
the V&V tasks, is complicated by the use of the products in multiple systems, some of which may only be in early
stages of planning. If a component is used in only one critical application system, it may be more cost-effective to
perform V&V during application engineering for that system rather than during domain engineering. Extension of
criticality analysis from application engineering to domain engineering is an important area of this framework.

4. V&V OF DOMAIN ARTIFACTS
Many of the same justifications for performing V&V in a product line that includes critical systems also

apply to V&V of general purpose reusable components. These general purpose components include domain
artifacts for systems that are not critical, as well as reusable components that are developed for general usage rather
than for a specific product line. The Component Verification, Validation and Certification Working Group at
WISR 8 found four considerations that should be used in determining the level of V&V of reusable components
[Edwards and Wiede 1997]:

• Span of application – the number of components or systems that depend on the component
• Criticality – potential impact due to a fault in the component
• Marketability – degree to which a component would be more likely to be reused by a third party
• Lifetime – length of time that a component will be used

The domain architecture serves as the context for evaluating software components in a product-line
environment. However, this architecture may not exist for general use components. The Working Group
determined that the concept of validation was different for a general use component than for a component
developed for a specific system or product line. In the latter case, validation refers to ensuring that the component
meets the needs of the customer. A general use component has not one customer, but many customers, who are
software developers rather then end-users. Hence validation of a general use component should involve the
assurance (and supporting documentation) that the component satisfies a wide range of alternative usages, rather
than the specific needs of a particular end-user.

5. RELATED WORK
Although work is lacking specifically in the area of V&V as applied to architecture-based software

engineering, there is related work that is applicable to some of the tasks within the framework. Component
certification was discussed in a previous section, and this work is certainly applicable (although not sufficient) for
V&V activity at the domain level. The analysis of architectures is the focus of attention and discussion [Tracz
1996, Garlan 1995], but there is not as yet consensus on methods and approaches and much of this work is directed
toward system architectures rather than product line architectures. One of the approaches being researched is a
scenario-based analysis approach, Software Architecture Analysis Method [Kazman, et al. 1996]. In the area of
correspondence tasks, the Centre for Requirements and Foundations at Oxford is developing a tool (TOOR) to
support tracing dependencies among evolving objects [Goguen 1996].

Framework for V&V in Architecture-Based Software Engineering 4

6. FUTURE WORK
An initial, high-level framework for performing V&V in architecture-based software engineering has been

developed. Once completed, this framework will allow the V&V effort to be amortized over the systems within a
domain or product line. However, .this framework is currently an outline with few details. V&V tasks that are
currently performed at the application level need to be adapted for the domain level, and traceability tasks need to
be adapted for the transition level. New methods not used on applications but appropriate for domain models or
architectures need to be considered. Since V&V should be performed as part of an overall risk mitigation strategy
within the domain or product line, methods of domain criticality analysis need to be developed., with attention paid
to support from emerging architecture description languages. The methods identified need to be validated by use
in projects having an architecture-based software engineering approach to producing applications that require
V&V.

REFERENCES
Addy, Edward A. (1998), “A Framework for Performing Verification and Validation in Reuse-Based Software

Engineering,” Annals of Software Engineering, Vol. 5, 1998.
Addy, Edward A. (1996), “V&V Within Reuse-Based Software Engineering”, In Proceedings of the Fifth Annual

Workshop on Software Reuse Education and Training, Reuse ‘96,
http://www.asset.com/WSRD/conferences/proceedings/results/addy/addy.html.

Dunn, Michael F. and John C. Knight (1993), “Certification of Reusable Software Parts,” Technical Report CS-93-
41, University of Virginia, Charlottesville, VA.

Edwards, Stephen H. and Bruce W. Wiede (1997), “WISR8: 8th Annual Workshop on SW Reuse”, Software
Engineering Notes, 22, 5, September 1997, pp 17-32.

Garlan, David (1995), “First International Workshop on Architectures for Software Systems Workshop Summary”,
Software Engineering Notes, 20, 3, July 1995, pp 84-89.

Goguen, Joseph A. (1996), “Parameterized Programming and Software Architecture,” In Proceedings of the Fourth
International Conference on Software Reuse, IEEE Computer Society Press, Los Alamitos, CA, pp 2-10.

IEEE STD 1012-1986 (R 1992), IEEE Standard for Software Verification and Validation Plans, Institute of
Electrical and Electronics Engineers, Inc., New York, NY.

IEEE STD 1059-1993, IEEE Guide for Software Verification and Validation Plans, Institute of Electrical and
Electronics, Inc., New York, NY.

Kazman, Rick, Gregory Abowd, Len Bass, and Paul Clements (1996), “Scenario-Based Analysis of Software
Architecture,” IEEE Software, 13, 6, November 1996, pp 47-55.

Poore, J.H., Theresa Pepin, Murali Sitaraman, and Frances L. Van Scoy (1992), “Criteria and Implementation
Procedures for Evaluating Reusable Software Engineering Assets,” DTIC AD-B166803, prepared for IBM
Corportation Federal Sectors Division, Gaithersburg, MD.

Software Productivity Solutions, Inc. (1996), “Certification of Reusable Software Components, Volume 2 –
Certification Framework,” prepared for Rome Laboratory/C3CB, Griffiss AFB, NY.

Tracz, Will (1996), “Test and Analysis of Software Architectures,” In Proceedings, International Symposium on
Software Testing and Analysis (ISSTA ’96), ACM Press, New York, NY, pp 1-3.

Unisys, Valley Forge Engineering Center, and EWA, Inc. (1994), “Component Provider’s and Tool Developer’s
Handbook,” STARS-VC-B017/001/00, prepared for Electronic Systems Center, Air Force Material
Command, USAF, Hanscom AFB, MA.

Wallace, Dolores R. and Roger U. Fujii (1989), Software Verification and Validation: Its Role in Computer
Assurance and Its Relationship with Software Project Management Standards,” NIST Special Publication
500-165, National Institute of Standards and Technology, Gaithersburg, MD.

